What is your opinion about the European Research Area? Are we heading in the right direction?

Europe needs mechanisms to encourage outstanding scientists to explore areas of science that are not dictated by “scientific planners”. No one knows where the next breakthrough in science will come from; experience shows that a great diversity of approaches is the best overall approach. This is related to the freedom of inquiry creative scientists can exert. The ERC addresses this issue.

Imagine that waking up one day, you find yourself heading the European Research Council (ERC). What would you take care of most?

The ERC should be like a great coach who maximizes the inherent talent of his players by letting their genius express itself. My first priority would be to make sure bureaucracy does not overtake flexibility and innovation. Next, I think the greatest danger is minimizing instead of maximizing risk. I would maximize the risks of projects we fund, while ensuring high-quality, independent peer review. Number three would be to ensure that politics of science does not impede conduct of science. Ultimately, the top priority is for the greatest scientific talent in Europe to give a free rein to their imagination, and to provide the financial and physical environment for them to accomplish that.

How can research funding stay innovative to encourage cutting edge frontier research?

The greatest risk is to stop taking risks. Great frontier research always starts with great questions. It is characterized by 1) driving toward grand challenges; 2) encouraging a diversity of approaches, including unconventional ways or methodologies to address profound questions; and 3) enabling free exchange of ideas among scientists – whatever their discipline. We want to encourage randomness and avoid the herd mentality that often stands in the way of breakthrough science. Exchange should be encouraged across the world by adopting transparent rules of reciprocity, regardless of the location, origin or culture of the scientist. Specifically, I’d like to see greater reciprocal collaborations grow among scientists in Europe and the US by ensuring that our funding policies do not hamper scientist-to-scientist collaboration. The challenges in life sciences are truly daunting. No single country or area has the capability of solving them on its own.

European R&D stakeholders are currently being invited by the European Commission’s Green Book, entitled “the European Research Area: New Perspectives”, to consider the shape of European science. Paying tribute to this process, R&D experts from outside the European Union, such as the National Institutes of Health’s Director Elias Zerhouni, the Russian laser physicist Victor Zadkov, and Motoyuki Ono, President of the Japan Society for the Promotion of Science, present their perspectives on science in Europe in this edition. Furthermore, R&D expert Stefan Kuhlmann looks at whether European R&D policy can still afford arguing about regional perspectives whilst neglecting scientific dynamics.

The managing director of the European Research Council (ERC), Jack Metthey, gives kudos to the first round of applications for 9,167 starting grants and explains further conditions for the advanced grants.

Moreover, Leena Peltonen, a member of the ERC’s Scientific Council, ponders on the ERC’s future activities and external relations with other agencies. And with the ERC developing towards an innovative, pan-European research council, the Deutsche Forschungsgemeinschaft (DFG) establishes a trendsetting in-house strategy and consultation unit to ensure in advance its activities complement those of the ERC. Moreover and through close liaison with KoWi, it will provide expertise for researchers and host institutions in Germany.

Enjoy reading,
Dr Annette Doll-Sellen
Director of KoWi

to be continued on next Page
Which future scientific development is most interesting to you?

As we have made tremendous progress in understanding the components of biological systems, we’ve realized the limitations of current approaches in understanding the complexities of these systems. Scientists have gone from unraveling to a great extent the components, or “hardware”, of biological systems to where we must now understand the dynamic interactions of these components, or “software”. Most interesting to me are advances in understanding molecular recognition mechanisms, the fundamental forces behind macromolecular assemblies and how information is conveyed through molecular conformation changes from the angstrom to larger nanometer scales.

How could NIH and the ERC pursue a common global approach?

I don’t know if we should encourage a one-size-fits-all global approach, but we should build even more scientist-to-scientist bridges across the world. We should continue to lower artificial barriers – such as administrative policies – that subject science to narrow unscientific interests. We should consider exchanging peer reviewers, making greater use of bi-directional peer review, enabling cross-continent collaborations and joint funding of exciting projects. Frontier research requires frontier ideas and funding mechanisms. We should focus especially on the next generation of explorers. Great scientific talent is rare and we must be careful not to waste any of it around the globe.
world, while inviting talented young researchers to them from other countries. In this era a global competition for “knowledge” assets, each country finds it important to cultivate an attractive research environment. In Japan as well, more dynamic innovation and reform will, I believe, be needed to enhance the global mobility of researchers.

Which strategies does Japan pursue to conduct outstanding research?

In Japan, the Abe Administration is working to spur the creation of innovation. To this end, the government is strategically promoting policy-driven R&D in various fields of bio and info technologies. As unplanned breakthrough results are more likely to spring from a broad spectrum of innovative activities, weight is placed in Japan on vigorously advancing a variety of basic research without being fettered by concern for short-term results. Advancing this kind of creative, cutting-edge research will, in turn, lead to future innovation creation. Since people, more than anything else, are the catalyst in propelling such an undertaking, it becomes vitally important to foster and secure excellent researchers and technicians. To produce ever-greater research results will require a balance between bottom-up basic research based on researchers’ own free ideas and top-down R&D based on policy objectives. Excellent personnel must be fostered and secured who will implement both kinds of research.

Please tell us about Japan’s scientific cooperation in Asia...

As Japan is close to the countries of Asia in not only geographical proximity but also in terms of natural environment and economic interdependence, growing expectation is being placed upon it to strengthen its linkages and collaborations with these countries. To this end, JSPS is working to forge a trilateral framework for collaboration with its immediate neighbours China and Korea. It is doing this by building upon the good cooperative relationships it has already cultivated with these countries. Concurrently, JSPS has been building a strong working relationship with science-promotion agencies in other Asian countries as well. Upon these foundations of cooperation in the region, JSPS has launched a programme to build a new S&T community in Asia. The main components of this programme are an annual meeting, in which representatives of Asia’s leading science-promotion agencies meet to exchange views and information, and HOPE Meetings, which are inspired by Germany’s Lindau Meetings (the annual meeting of Nobel laureates), aiming at fostering young researchers from the Asian-Pacific region.

How are young scientists encouraged to perform research in Japan?

In Japan as well, the fostering and securing of young researchers is an important policy issue. The government has placed high priority on doing so in its S&T Basic Plan. In an effort to cultivate young Japanese researchers, who will go on to play leading roles in the international arena, JSPS organises Frontiers of Science (FoS) Symposia with counterpart agencies in the US and Europe. They give young Japanese researchers an opportunity to engage in intensive discussions with overseas colleagues of their own generation, who are invited to Japan to participate in the symposia. Various other concerted efforts have been initiated to raise the standard of research at Japanese universities and to create within them attractive research environments for young researchers from around the world. These included JSPS’s newly launched Global COE Program and the World Premier International Research Center Initiative Program. I believe that it is important to promote a “circulation of good brains” throughout the world. To this end, Japan would like to work together with the countries of Europe, while competing in some areas and cooperating in others.

About Motoyuki Ono

Professor Ono is one of Japan’s top authorities on the education policy and university reform. As Vice-Minister, he planned and carried out far-reaching university and educational reform initiatives. After graduating in law from Kyoto University in 1968, Professor Ono entered Japan’s Ministry of Education, Science, Sports and Culture. In 2000, he became Vice-Minister of the Ministry. In 2003, he became President of JSPS. Since 2003, Professor Ono has concurrently been a visiting professor at Doshisha University.

The Japan Society for the Promotion of Science (JSPS)

The Japan Society for the Promotion of Science (JSPS) is Japan’s leading funding agency and covers all fields of science including social sciences and humanities. It aims at awarding Grand-in-Aid for Science Research, fostering young researchers, promoting international scientific cooperation and supporting university-industry research cooperation. Moreover, JSPS engages in collecting and distributing information on scientific research activities. JSPS holds ten international liaison offices in nine countries, e.g. Washington, Bonn, London, Strasbourg, Nairobi, Cairo etc. Established in 1932 as a non-profit foundation, JSPS has been under the Ministry of Education since 1967 and in October 2003, it developed into an independent administrative institution. JSPS’s budget for the 2007 fiscal year totals ¥222.6 billion, which roughly amounts to €1.37 billion. This amount is divided into direct funding of ¥159.7 billion and indirect funding of ¥62.9 billion. The indirect funds are provided in Japan’s budget of the Ministry of Education, Culture, Sports, Science and Technology for programme selection and assessment functions performed by JSPS.

Further information is available at www.jsps.go.jp
Science does not recognise any borders

Questions for Professor Leena Palotie-Peltonen, Member of the ERC Scientific Council

From which non-EU regions have most applications for starting grants been received?

All the ERC Scientific Council members, including myself, were delighted and impressed by both the high number of applications we received and by the substantial amount of proposals sent from non-EU countries, including some 200 from USA. This means that we truly have got the attention of investigators and that this type of “investigator-driven” funding format is in high demand in Europe.

From which non-EU regions have most applications been sent in?

To my knowledge, from the US and from Asian countries - it seems that it will also be possible to recruit back some expatriates. This is of course a wonderful opportunity for the entire academic sector in Europe, and the European innovation system.

How will the ERC organise its external international relations with European and with non-European partners in particular?

This is a critical issue and the discussion has already been initiated with the leadership of organisations like the NIH and NSF. There should be ways in which we can coordinate and harmonise our operations and learn from each other. In the future, I would personally even like to see some joint calls and closely integrated research projects that aim to respond to massive global challenges. Science does not recognise any borders!

How will the ERC communicate with its non-European partners to raise its international profile in order to attract both outstanding researchers and peer reviewers from outside Europe?

The ERC grants have already increased the visibility of research funding in Europe. The ERC stimulates excellence and the skills of top investigators to transform the European research landscape. Investigator-driven ideas are the basis for ERC awards. The ERC council realises that in future the ERC grants will play a role at the national level in European academia. These grants should become equally important as NIH or NSF grants are in the US as measures used for evaluation of the success of scientists and research projects. I would like to see future faculty nominations in Europe being partially based on the ERC awards, just as NIH and NSF grants are used as criteria for promotion in US academia. These grants should be the best indicators of investigators’ excellence. Furthermore, the ERC, together with leading non-European funding agencies, will facilitate the recruitment of top-level evaluators for ERC grants. Investigators with considerable experience from the study sections of organisations like NIH or NSF are highly valuable for ERC.

Does the ERC plan to use a clear structure to compare the effectiveness and efficiency of its management with international partners?

Any organisation needs benchmarking. The ERC should use only established funding organisations to benchmark its procedures, including transparency, evaluation processes and funding decisions, as well as follow-up analyses of the true impact of ERC funding. This is a long-term process and must be carefully assessed and constantly evaluated. There is too much – the future of European research – at stake, so we simply cannot fail!

How will you attract outstanding researchers assisting the ERC’s evaluation and strategic tasks?

The international scientific community is needed not only as a recruitment pool to get leading experts on evaluation panels for ERC grants, but also as a potential recruitment pool for the membership of the scientific council of ERC. Again, my dream would be to ensure these positions have the highest possible prestige in the scientific community and are globally attractive. Only the top expertise of leading scientists and their commitment to the ERC will guarantee that the ERC’s strategies constantly develop to face the challenges of time, and that this flagship of European science funding will continue to develop and prove its value to the public and European decision-makers as well.

About Leena Peltonen

Leena Palotie-Peltonen is Professor of Medical Genetics and Molecular Medicine at the University of Helsinki and the National Public Health Institute, Finland and a Professor of the Academy of Finland and Director of the Centre of Excellence of the Academy. Pioneer in the use of genetically isolated populations in the genetics-based identification of disease genes, Professor Peltonen is the president of the Human Genome Organization and has served as member of the UNESCO Bioethics Committee and the Board of Directors of the American Society of Human Genetics. Apart from over 400 publications she has received several international science awards e.g. Scandinavian Anders Jahre Prize, European Mauro Baschirotto Prize, Antoine Marfan Award (USA) and Margaret Pittman Award of NIH.
Early stage mobility programmes – a sound basis for lasting cooperation

Questions for Professor Victor N. Zadkov, Vice-Dean of the Faculty of Physics at M.V. Lomonosov Moscow State University.

You are widely acknowledged to be a driving force behind German-Russian scientific collaboration at Lomonosov University and beyond. What are your incentives for this activity?

First of all, Lomonosov Moscow State University can look back on a rich and longstanding tradition of collaborating with German scientists ever since Mikhail Lomonosov himself, the founder of the university and one of the great universal scientists of his time, was a scholar in Germany from 1736-1741. As a PhD student of physics at Lomonosov University, I published a paper with Prof. Gerd Marowsky (Göttingen). A few years later, I became involved in the organisation of the German-Russian Laser Symposium, which has since then served as a driving force behind German-Russian cooperation in the field of laser physics and its applications. Prominent researchers, such as H. Walter, Th. Haensch, W. Kieler, A. Laubereau, J. Mlynek and F. Traeger have played an active part in the symposium. Later on, a Humboldt fellowship allowed me to spend a year at the Institute of Applied Physics at the University of Bonn. Here I began a long-running collaboration with Prof. Dieter Meschede’s group, which continues to this day. After returning to Moscow, I was elected as President of the Moscow Humboldt Club, which unites all “Humboldtians” living in Moscow and the Moscow region. We represent scientific excellence, and our positions are widely recognized in Russia and in Germany. As well as the Humboldt Foundation, we have close relationships with the Deutsche Forschungsgemeinschaft, the Helmholtz Society and the German Embassy in Moscow. All this definitely helps us to establish and promote collaborative efforts between Russia and Germany.

What are the main obstacles in building scientific cooperation – bilaterally, and at the European level?

First of all, cooperation requires money, which is paid proportionally by both sides. However, sometimes there is a general misconception on the side of Russian partners that money flows merely from their German partners. Therefore, it is no surprise that the level of funding from the Russian side is not high enough.

Moreover, the majority of Russian scientists, especially those working outside of Moscow, face significant problems in finding German partners to collaborate with. They neither travel to international meetings often enough nor have a chance to read key scientific journals: free access to key scientific journals is still limited if you are outside big research centres. Europe presents a very similar yet even more complicated situation due to massive red tape and inaccessible procedures and instructions for proposals, which makes them rather difficult for scientists to understand and follow.

With regard to the establishment of the European Research Council, which benefits do you expect for Russia, and how do you assess the risk of further brain drain from your country?

I strongly support the ERC, which is most importantly for science based on a “bottom-up” principle. In this respect, the ERC resembles the DFG in Germany, which has proved to be an efficient money-distribution engine in science. I hope that Russian scientists will also succeed in winning ERC projects and working either in Russia or subcontracting to staff in Russia. Whilst some people fear the brain drain of Russian scientists, sociological studies clearly show that this problem is less of an issue nowadays. From my experience, an internal brain drain to be continued on next Page

About Victor N. Zadkov

Professor Victor N. Zadkov is the head of Quantum Information Laboratory, Vice-Dean of Physics, and Vice-Director of the International Laser Center at M.V. Lomonosov Moscow State University. Specialised in physics of quantum information and laser physics, Professor Zadkov is also a founding member of the International Academy of Laser Medicine and Surgery. In 2003 he was elected as a member of the Quantum Electronics and Optics Division Board/European Physical Society. In 1984 Victor Zadkov was awarded by the Lenin Komsomol Prize in Physics - the highest award for young scientists in the Former Soviet Union. In 1997 he was a Humboldt fellow with Professor Dieter Meschede at the Institute of Applied Physics, University of Bonn, Germany. Professor Zadkov currently chairs the Moscow Humboldt Club.
The European Research Area – an „Intra-European” task!

Professor Stefan Kuhlmann, Faculty of Management and Governance at the University of Twente

The Green Paper, “The European Research Area: New Perspectives” and the associated consultation process come not a day too early: both European bodies and member states will now be required to comment on the further expansion of the European Research Area. The ERA process has for far too long lain in a slumber on the part of member states.

Whereas the Commission has put in place a series of creative instruments (the ERA-NET initiative met with an unexpectedly high degree of resonance with funding agencies and ministries in member states, and has made completely new forms of intra-European cooperation possible; the “Open Method of Coordination” gives member states plenty of scope for bilateral or multilateral initiatives; the “Technology Platforms” make it easier to communicate innovation needs between industry, science and politics easier across countries in a more flexible way), national governments continue to play the waiting game - if they are not just completely disinterested. Though the ERA-NET initiatives were eagerly picked up by the "middle management" of national research policy structures, this is hardly an expression of governments’ explicit “Europeanisation strategies”; rather the middle management finds in this a useful outlet for the growing pressure to create “post-national” governance structures in the research landscape, which arose and is still growing due to internationally active and mobile scientists and industrial innovators. A look at the “National Reform Programmes” and the associated “Progress Reports”, which the member states have published since 2005 as part of the revised Lisbon Process, reveals how little to date the states have made their numerous reform measures “intra-European” (see the current report of the Commission’s Lisbon Expert Group).

Why “intra-European”? To prevent misunderstandings: it is not about “Europeanisation” as a goal in itself. Of course, research policy measures (such as funding programmes or the management of research institutions) will also remain a national (or regional) matter in the future, just as we will need a “European-federal” working level, such as the

Integrating Russia into the European Research Area is a strategic focus of both the German Research Foundation (DFG) as a national research council, and the European Commission. What is your main piece of advice to these two institutions to achieve their goal?

To start with, I suggest that paying more attention to the development of informal links between Russian scientists and scientists from the EU and Germany in particular would be vital. Scientists generally find their own ways to cooperate if they have proper financial support from both national and European financial sources. Yet various mobility programmes at the very early stage of a scientist’s career, such as Humboldtians, who spent one or two years in Germany at the earlier stages of our careers, have developed strong scientific cooperation with former and new partners in Germany and in the EU. This really works!

About Stefan Kuhlmann
Professor Dr Stefan Kuhlmann holds the “Foundations of Science, Technology and Society” chair in the Faculty of Management and Governance at the University of Twente in the Netherlands. A political scientist and historian, he has conducted research into science, research and innovation systems and their governance over the past 20 years. Prior to summer 2006, he was based at the Fraunhofer Institute for Systems and Innovation Research in Karlsruhe, most recently as director (acting); he was previously also professor of innovation policy analysis at the University of Utrecht. Kuhlmann is on the editorial board of the journal Research Policy, a member of the European Commission’s Lisbon Expert Group and a member of KoWi’s scientific council.

About Lomonosov Moscow State University
Moscow University (MSU) was established in 1755. Over 2000 students enrol every year while more than 40 000 undergraduates and about 7 000 postgraduates study within around 20 scientific disciplines at the university. More than 4 000 professors and lecturers, and about 5 000 researchers work for the faculties and research institutes. The university employs over 15 000 of ancillary staff.

Further information is available at www.msu.ru/en

Forschungsbrief aus Brüssel No 8 2007
Framework Programme, for themes of continent-wide importance. After all, competition between member states’ various research policy orientations and programmes will act as a stimulus. But between the dichotomy of “nation” and “Europe” there is a gaping hole: fragmentation of research landscapes in Europe, derogating performance and attractiveness, cannot be addressed solely by measures at the European level. Universities, research institutions, businesses and public funding agencies need conditions that enable them to develop bottom-up common strategies to increase their productivity and attractiveness in education, research and innovation, without having to consider national borders.

The need for cross-border bi-national, multinational or regional initiatives from research institutions must be measured by the specific dynamics of different areas of science and innovation. Take, for example, selected areas of molecular biology: how would intra-European cooperation, such as a border-spanning research and teaching programme shared by several universities, help to mobilise thematic convergence, to establish new knowledge profiles and to employ the partners’ complementary strengths?

Such questions are still far too seldom asked, and where they are, one finds that national science policy barely supports initiatives or hardly removes obstructive conditions. But an active contribution to the multilateral establishment of attractive cross-border “knowledge clusters” is in the well-understood self-interest of the European national states, even the “biggest”: against increasing global competition, without intra-European measures, it will become more and more difficult for them to sustain knowledge clusters appealing the bright ones.

The key word is transparency

Questions for Jack Metthey, Ph.D., Director in the European Commission’s, DG Research, Directorate S

When you learned that 9,167 ERC Starting Grant proposals had been submitted to the 1st ERC call (closing date 25th April 2007), what were you actually thinking?

My first thought was “Wow!”. My colleagues and I were quite impressed by this massive response. It is a clear sign of the need for such a funding scheme at a European level. Of course, this high number of proposals means we are also concerned to ensure that each proposal receives fair, equal and transparent treatment in the evaluation process. Therefore, an additional 600 Panel evaluators were selected by the Scientific Council. Moreover, the National Research Councils agreed to second their own staff to the ERC for assistance and support at the meetings of the ERC Panels. We thank them for this. The evaluation process started in mid-May and lasted until mid-July. Applicants have been informed of the outcome in July and August and those who have passed the first stage have been invited for the second one, which will include an interview.

The ERC should attract the best brains from all over the world. How is this reflected in the actual applications?

Principal Investigators can be of any nationality and be living anywhere, but must apply in conjunction with a host institution in an EU member state or associated country, where he or she will be employed at least for the period of the grant. Altogether, 244 applications (3.2%) have been received from Principal Investigators who are currently living and working overseas, mostly in North America. This is a promising number which suggests that, over time, ERC grants can appeal to overseas research talent.

Could you define the interface between the ERC’s international relations policy and the FP7 international cooperation policy?

The international dimension is a high priority for the Scientific Council. The ERC grant schemes provide attractive career opportunities to the very best re-

to be continued on next Page
searchers from all around the world to work in Europe. Moreover, and if scientifically essential, a PI may decide to include a researcher in his/her team who will continue to work at an institution located in a third country. This is a valid option only if there is a sound scientific and/or logistical need for it and if the PI’s role as team leader is not undermined.

What is the communication policy of the ERC? Is there any structured dialogue established with the scientific community and key stakeholders, including the national research funding agencies?

The keyword is “transparency”. It is the most important ingredient in making the ERC a lasting success vis-à-vis the scientific community. Significant efforts were taken by the Scientific Council to ensure that it would satisfy the scientific community’s interest in the ERC right from the start, as well as raising awareness amongst the wider public by means of press releases, an updated website (http://erc.europa.eu) and a network of dedicated “National Contact Points” throughout Europe. The feedback received is very positive. As soon as the two ERC grant schemes are consolidated – i.e. after the second ERC Call which will focused on ERC Advanced Grants – the Scientific Council will further elaborate its dialogue, exchange and cooperation with the main stakeholders in Europe and abroad. In particular, the ERC wishes to contribute to a sustainable and well-functioning institutional structure for basic research in Europe.

Ideally, this should support the diversity of research systems, and consolidates or creates actions at different levels, including other research funding organisations. I call this “applied subsidiarity”.

What are the characteristics of the application procedure and modalities for the ERC Advanced Grants?

The application procedure for the ERC Advanced Grant will be based on a 1-stage submission and 2-step evaluation process. From the 1st Call for ERC Starting Grant proposals we realized that measures need to be taken to reduce the number of proposals submitted. For example, the excellence of the principal investigator will become more important; a scientific leadership profile and a summary track record will be evaluated. In addition, the call deadlines will be staggered: five deadlines will be available for distinct groups of panels mixed from all three ERC areas: Area 1 - social sciences and humanities; Area 2 - mathematics, physical sciences, information and communication engineering, universe and earth sciences, Area 3 - life sciences. The Scientific Council has also decided to adjust the structure of ERC Panels for the Advanced Grant evaluation by extending it to 25 panels with up to 15 panel members.

How will you follow up further career developments of ERC grant holders?

The ERC aims to raise excellence in research in Europe by providing competitive funding to the very best brains in Europe. It will therefore be of utmost importance to monitor excellence in research and showcase success stories which result from ERC funding.

Make them an offer they can’t refuse!

Successfully inviting and hosting ERC grant holders makes research sites ever more visible and competitive. In international comparison, several countries suit the action to the words of the ERC Scientific Council to offer welcome packages and further incentives for ERC researchers. While some countries pay a financial top up to the ERC grants, others provide soft incentives such as assistance by national peer-reviewers for writing proposals, or national grants compensating for unsuccessful yet promising applications. To map the situation in Germany, KoWi has conducted – in cooperation with the Federal Association of European Research Project Managers at German Universities – a survey asking 100 universities if incentives are offered at their sites. Up to the closing date of the survey, around one third of the participating universities stated that they would already offer incentives to prospective grant holders. These incentives or »welcome packages« to be offered to grant holders include funding on top up the ERC grant as well as additional resources, such as personnel, equipment, consumables or research infrastructure.

Many universities do not provide additional resources so far, but access to existing ones is widely guaranteed. Allowing the principal investigator to supervise Ph.D. students was also sounded out, and more than half of the universities surveyed are already in accordance. However, offering opportunities for subsequent career development to promising young researchers has widely been neglected. Fortunately, universities set about »soft factors« to attract young excellent researchers, such as dual-career-models or daycare-facilities for children.

Those universities currently preparing strategies to optimise their research environment to attract excellent international researcher may take these best-practice-examples into consideration. The results of our survey are available on request. KoWi and DFG’s new ERC strategy unit will help Germany’s university administrations to tailor individual solutions for attracting ERC grant holders.